Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Цифровые устройства /

Разработка сенсора на поверхностно-акустических волнах. Автоматизация измерительной установки

←предыдущая  следующая→
1 2 3 4 5 6 7 8 9 



Скачать реферат


Министерство образования Российской Федерации

Нижегородский государственный технический университет

Дзержинский филиал

Факультет

Химико-механический

Кафедра

Автоматизация технологических процессов и производств

Магистерская диссертация

по теме:

Разработка сенсора на поверхностно-акустических волнах. Автоматизация измерительной установки.

Выполнил:

магистрант гр. 95-АТПМ-1

Ермаков Е. С.

Зав. кафедрой АТПП:

д.т.н., профессор

Сажин С.Г.

Научный руководитель:

д.т.н., профессор

Сажин С.Г.

г. Дзержинск

2001 г.

Содержание

СОДЕРЖАНИЕ 2

ВВЕДЕНИЕ 3

ЛИТЕРАТУРНЫЙ ОБЗОР 5

ОСНОВНЫЕ ПРИНЦИПЫ КОНСТРУИРОВАНИЯ ПАВ СЕНСОРОВ 5

НЕКОТОРЫЕ ЗАДАЧИ, РЕШАЕМЫЕ ПАВ СЕНСОРАМИ 11

КОНСТРУКЦИЯ ЭКСПЕРИМЕНТАЛЬНОЙ ЯЧЕЙКИ 18

ОПИСАНИЕ ПРИБОРОВ И МАТЕРИАЛОВ 21

СОПРЯЖЕНИЕ ЧАСТОТОМЕРА С ЭВМ 35

ОСОБЕННОСТИ ЗАДАЧИ 35

ПОСТАНОВКА ЗАДАЧИ СОПРЯЖЕНИЯ 41

ПРЕОБРАЗОВАНИЕ УРОВНЯ 43

ПРЕОБРАЗОВАНИЕ КОДА 44

Параллельные порты ввода/вывода. 53

Прерывания 56

Последовательный порт ввода/вывода 57

РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ УСТРОЙСТВА СОПРЯЖЕНИЯ 64

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ 70

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ 78

ЭКОНОМИЧЕСКАЯ ЧАСТЬ 83

ТЕХНИКА БЕЗОПАСНОСТИ 84

ВЫВОДЫ 85

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 86

Введение

В условиях современности проблема контроля за состоянием окружающей среды выходит на все более ведущее место. Контроль этот осуществляется как стационарными приборами, так и портативными. К стационарным приборам можно отнести инфракрасные спектрометры, газовые хроматографы, массовые спектрометры и некоторые другие. Работа портативных приборов основана на использовании твердотельных преобразователей. Такие преобразователи позволяют осуществлять миниатюризацию приборов, снижать потребляемую ими мощность, а также дают возможность производить их с помощью технологии микроэлектроники, ну а это - качество, надежность и возможность создания многоточечных систем контроля. Разработка такого рода приборов является актуальной проблемой микроэлектроники и автоматики. [1].

Химический твердотельный сенсор представляет собой микроэлектронное устройство, которое преобразует изменение химических свойств среды или состава среды в электрический сигнал [2]. Одним из наиболее перспективных направлений в разработке химических сенсоров является создание устройств на поверхностно-акустических волнах (ПАВ). ПАВ устройства привлекательны для применения в качестве химических микросенсоров в силу своей чувствительности, малого размера и дешевизны изготовления на основе технологии микроэлектроники. Так же преимуществом ПАВ сенсоров является высокая чувствительность скорости распространения поверхностно-акустической волны к любым изменениям свойств поверхностного материала. Это объясняется тем, что чувствительность таких сенсоров растет пропорционально квадрату рабочей частоты прибора, а охватываемый диапазон рабочих частот изменяется от десятков мегагерц до нескольких гигагерц.

Необходимо отметить, что область применения ПАВ сенсоров достаточно широка и разнообразна. Эти приборы также нашли свое применение в качестве датчиков температуры и давления, а, кроме того, дают возможность проводить исследование свойств различных полимерных пленок.

Литературный обзор

Основные принципы конструирования ПАВ сенсоров

В своей основной форме химический микросенсор представляет собой по меньшей мере два элемента: миниатюрная подложка и химически селективное покрытие [10].

Подложка имеет контакт с покрытием и обеспечивает возникновение электрического сигнала, чьи характеристики отражают состояние покрытия.

Покрытие имеет контакт со средой, содержащей химическое вещество, которое должно быть обнаружено. Различия в свойствах покрытия, посредством которых происходят те или иные химические взаимодействия, обеспечивают перенос вещества или энергии через подложку [10].

Возникновение акустической волны достигается использованием ПАВ покрытия, линии задержки и колебательного контура.

При адсорбции чувствительным покрытием определяемых веществ происходит изменение характеристик поверхностно-акустической волны, таких как фазовая скорость, амплитуда и частота. Происходит это вследствие изменения упругих свойств чувствительного слоя и его электропроводности [1]. По этим изменениям можно судить о концентрации примеси в среде.

ПАВ микросенсор представляет собой тонкую пластинку из отполированного пьезоэлектрического материала (например, кварца, ниобата лития, танталата лития), на которую нанесены две системы встречно-штырьевых преобразователей (ВШП), одна из которых работает в качестве передающего преобразователя, а вторая является принимающим преобразователем [2]. Края на обоих концах пластинки искажаются или нагружаются абсорбционной резиной для подавления отражения в направлении распространения первичной волны. Если на одну из систем ВШП подается высокочастотное напряжение, то на поверхности пластинки за счет обратного пьезоэффекта генерируется поверхностно-акустическая волна. Эта волна затем распространяется вдоль поверхности пластинки до тех пор, пока не попадет на другую систему ВШП, где она преобразуется обратно в высокочастотное напряжение. Время задержки между входным и выходным электрическими сигналами определяется по формуле:

,

где l - среднее расстояние между системами ВШП,

V - скорость распространения поверхностно-акустической волны.

Максимальное акустоэлектрическое взаимодействие систем ВШП имеет место при характеристической частоте , определяемой следующим соотношением:

,

где h - шаг ВШП [З].

Соединение двух ВШП через высокочастотный усилитель (рис. 1) дает возможность данному устройству поддерживать колебательный процесс на резонансной частоте при условии выполнения следующих требований:

набег фаз в кольце получающегося таким образом колебательного контура составляет , где n - целое число;

потери в линии задержки компенсируются усилителем [2].

Область распространения ПАВ между системами ВШП используется в сенсорных устройствах в качестве чувствительной области. Любое изменение физических параметров среды (температуры, давления) оказывает влияние на рабочую частоту ПАВ прибора. Это явление используется в данном типе датчиков в качестве сенсорного эффекта. В случае применении ПАВ приборов в качестве химических газовых сенсоров на область распространения поверхностно-акустической волны наносится чувствительное покрытие, обладающее свойством селективно взаимодействовать с определяемым веществом. Нанесение покрытия отражается в значительном ослаблении поверхностной волны и соответствующем уменьшении резонансной частоты прибора. Было показано [2] что изменение резонансной частоты, обусловленное наличием покрытия на поверхности распространения поверхностно-акустической волны, описывается следующим соотношением:

,

где - сдвиг резонансной частоты за счет изменения чувствительным покрытием скорости поверхностно-акустической волны,

и характеристики пьезоэлектрического материала,

- начальная резонансная частота,

h - толщина чувствительного покрытия,

- его плотность.

Не трудно заметить, что произведение - представляет собой массу покрытия на единицу площади. Таким образом, изменение частоты поверхностно-акустической волны зависит в первую очередь от двух факторов - массы единицы площади пленки и механических свойств пьезоэлектрической подложки. Применение слишком толстых пленок отражается в чрезмерном ослаблении скорости поверхностно-акустической волны и последующем затухании колебаний. Было установлено, что наиболее приемлемой является толщина пленки, составляющая 1% от длины волны. В этом случае способность покрытия адсорбировать определяемые вещества достаточно велика, чтобы обеспечить хорошую чувствительность. С другой стороны такая толщина покрытия не приводит к затуханию колебаний.

В результате адсорбции газов чувствительным покрытием изменяются свойства среды распространения поверхностно-акустической волны, а, следовательно, и ее характеристики.

В общем случае, для определения концентрации газов можно измерять изменение амплитуды, скорости или частоты поверхностно-акустической волны. Наиболее простым, надежным, а самое главное точным методом является измерение сдвига частоты. То есть в качестве сенсорного эффекта в данном типе датчиков используется различие рабочих частот поверхностно-акустической волны прибора в различных средах.

Некоторые задачи, решаемые ПАВ сенсорами

В работе [6] авторами решена задача классификации ароматов и определения степени свежести пищевых продуктов по запаху с использованием аналитической микросхемы, работающей на принципе измерения скорости поверхностно-акустической волны. Описывается микросистема для исследования запахов и ароматов, основанная на использовании набора пьезоэлектрических резонаторов с покрытиями, селективно сорбирующими пары определяемых соединений из атмосферы. Полученный прибор состоит из восьми резонаторов, колеблющихся с

←предыдущая  следующая→
1 2 3 4 5 6 7 8 9 



Copyright © 2005—2007 «Mark5»