Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Математика /

Аркфункции

←предыдущая  следующая→
1 2 



Скачать реферат


Примеры: в нижеследующих примерах приведены образцы исследования элементарных функций, заданных формулами, содержащими обратные тригонометрические функции.

Пример №1. Исследовать функции arcsin(1/x) и arccos(1/y) и построить их графики.

Решение: Рассмотрим 1-ю функцию

y = arcsin(1/x)

Д(f): | 1/x | ≤ 1 ,

| x | ≥ 1 ,

( - ∞ ; -1 ] U [ 1; + ∞ )

Функция нечетная

( f(x) убывает на пр. [0;1] , f(y) убывает на пр. [0;π/2] )

Заметим, что функция y=arccosec(x) определяется из условий cosec(y)=x и y є [-π/2; π/2], но из условия cosec(y)=x следует sin(y)=1/x, откуда

y=arcsin(1/x). Итак, arccos(1/x)=arcsec(x)

Д(f): ( - ∞ ; -1 ] U [ 1; + ∞ )

Пример №2. Исследовать функцию y=arccos(x2).

Решение:

Д(f): [-1;1]

Четная

f(x) убывает на пр. [0;1]

f(x) возрастает на пр. [-1;0]

Пример №3. Исследовать функцию y=arccos2(x).

Решение: Пусть z = arccos(x), тогда y = z2

f(z) убывает на пр. [-1;1] от π до 0.

f(y) убывает на пр. [-1;1] от π2 до 0.

Пример №4. Исследовать функцию y=arctg(1/(x2-1))

Решение:

Д(f): ( - ∞ ; -1 ) U ( -1; 1 ) U ( 1; +∞ )

Т.к. функция четная, то достаточно исследовать функцию на двух промежутках:

[ 0 ; 1 ) и ( 1 ; +∞ )

X

0 < x < 1 < x < +∞

u=1/(x2-1)

-1 ↘ + ∞

- ∞ ↘ 0

y=arctg(u)

- π/4 ↘ π/2

- π/2 ↘ 0

Тригонометрические операции над аркфункциями

Тригонометрические функции от одного и того же аргумента выражаются алгебраически одна через другую, поэтому в результате выполнения какой-либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение.

В силу определения аркфункций:

sin(arcsin(x)) = x , cos(arccos(x)) = x

(справедливо только для x є [-1;1] )

tg(arctg(x)) = x , ctg(arcctg(x)) = x

(справедливо при любых x )

Графическое различие между функциями, заданными формулами:

y=x и y=sin(arcsin(x))

Сводка формул, получающихся в результате выполнения простейших тригонометрических операций над аркфункциями.

Аргумент

функция arcsin(x) arccos(x) arctg(x) arcctg(x)

sin sin(arcsin(x))=x

cos x

tg

x 1 / x

ctg

1 / x x

Справедливость всех этих формул может быть установлена при помощи рассуждений, приведенных ниже:

1. Т.к. cos2x + sin2x = 1 и φ = arcsin(x)

Перед радикалом следует взять знак “+”, т.к. дуга принадлежит правой полуокружности (замкнутой) , на которой косинус неотрицательный.

Значит, имеем

2. Из тождества следует:

3. Имеем

4.

Ниже приведены образцы выполнения различных преобразований посредством выведения формул.

Пример №1. Преобразовать выражение

Решение: Применяем формулу , имеем:

Пример №2. Подобным же образом устанавливается справедливость тождеств:

Пример №3. Пользуясь ...

Пример №4. Аналогично можно доказать следующие тождества:

Пример №5. Положив в формулах

, и

, получим:

,

Пример №6. Преобразуем

Положив в формуле ,

Получим:

Перед радикалами взят знак “+”, т.к. дуга принадлежит I четверти, а потому левая часть неотрицательная.

Соотношения между аркфункциями

Соотношения первого рода – соотношения между аркфункциями, вытекающими из зависимости между тригонометрическими функциями дополнительных дуг.

Теорема. При всех допустимых х имеют место тождества:

Соотношения второго рода – соотношения между аркфункциями, вытекающие из соотношений между значениями тригонометрических функций от одного и того же аргумента. Посредством соотношений 2-го рода производятся преобразования одной аркфункции в другую (но от различных аргументов).

Случай №1. Значения двух данных аркфункций заключены в одной и той же полуокружности.

Пусть, например, рассматривается дуга α, заключенная в интервале (-π/2; π/2).

Данная дуга может быть представлена как в виде арксинуса, так и в виде арктангенса. В самом деле, дуга имеет синус, равный sinα и заключена, так же как и α, в интервале (-π/2; π/2), следовательно

Аналогично можно дугу α представить в виде арктангенса:

А если бы дуга α была заключена в интервале ( 0 ; π ), то она могла бы быть представлена как в виде арккосинуса, так и в виде арккотангенса:

Так, например:

Аналогично:

Формулы преобразования одних аркфункций в другие, значения которых содержаться в одной и той же полуокружности (правой или верхней).

1. Выражение через арктангенс.

Пусть , тогда

Дуга , по определению арктангенса, имеет тангенс, равный и расположена в интервале (-π/2; π/2).

Дуга имеет тот же тангенс и расположена в том же интервале (-π/2; π/2).

Следовательно,

(1)

(в интервале ( -1 : 1 )

2. Выражение через арксинус.

Т.к. , то (2)

в интервале

3. Выражение арккосинуса через арккотангенс. Из равенства следует тождество

(3)

Случай №2. Рассмотрим две аркфункции, значения которых выбираются в различных промежутках (например, арксинус и арккосинус; арккосинус и арктангенс и т.п.). Если аргумент какой-либо аркфункции (т.е. значение тригонометрической функции) положителен, то соответственно аркфункция (дуга), заключенная в первой четверти, может быть представлена при помощи любой аркфункции; так, например,

Поэтому каждая из аркфункций от положительного аргумента может быть выражена посредством любой другой аркфункции.

Значение какой-либо аркфункции от отрицательного аргумента принадлежит либо промежутку от -π/2 до 0, либо промежутку от π/2 до π и не может быть представлено в виде аркфункции, значение которой принадлежит другому (из этих двух) промежутку.

Так, например, дуга не может быть значением арксинуса. В этом случае

Формулы преобразования одних аркфункций в другие, значения которых выбираются в различных полуокружностях.

4. Выражение арксинуса через арккосинус.

Пусть , если , то . Дуга имеет косинус, равный , а поэтому

При это равенство выполняться не может. В самом деле, в этом случае

, а для функции имеем:

так как аргумент арккосинуса есть арифметический корень , т.е. число неотрицательное.

Расположение рассматриваемых дуг пояснено на рисунке:

Х>0 X 0 наличие случая 1 означает выполнения неравенства а) т.е. или

Откуда

и, следовательно,

Наличие случая 1 при x < 0, y < 0 означает выполнение неравенств

;

но тогда для положительных аргументов –x и –y имеет место случай 1, а потому

или

Случай 2.

В этом случае x > 0, y > 0, т.е. выполняется неравенство б); из условия получим

Случай 3.

Этот случай имеет место при x < 0, y < 0, и

Изменив знаки на противоположные придем к предыдущему случаю:

откуда

Дуги γ и имеют одинаковый синус, но (по определению арксинуса) , следовательно в случае 1 ;

в случае 2 и в случае 3 .

Итак, имеем окончательно:

, или

; x > 0, y > 0, и (1)

; x < 0, y < 0, и

Пример:

;

2. Заменив

←предыдущая  следующая→
1 2 



Copyright © 2005—2007 «Mark5»